restructure logic to work on groups of valves and sensors instead of being 1:1:1

This commit is contained in:
Vinzenz Schroeter 2025-05-27 14:25:20 +02:00
parent 794c17052f
commit 7a25e4b46e
2 changed files with 347 additions and 233 deletions

View file

@ -1,21 +1,30 @@
#pragma once #pragma once
#include <Arduino.h> #include <Arduino.h>
typedef struct { struct Sensor {
/// Which analog pin this is connected to (A0, A1, ...) /// Which analog pin this is connected to (A0, A1, ...)
uint8_t pin; uint8_t pin;
/// The value sensors read when completely dry /// The value sensors read when completely dry
int calibration_dry; int calibration_dry;
/// The value sensors read when completely wet /// The value sensors read when completely wet
int calibration_wet; int calibration_wet;
} Sensor; /// Pot group index this sensor belongs to
unsigned int pot_group;
};
typedef struct { struct Group {
uint8_t valve_pin; /// Enable or disable the group
bool enabled;
/// Which pin the indicator light is connected to
uint8_t led_pin; uint8_t led_pin;
Sensor sensor; };
// define additional per-pot config here
} PotConfig; struct Valve {
/// The digital pin this valve is connected to
uint8_t pin;
/// Pot group index this valve belongs to
unsigned int pot_group;
};
constexpr unsigned int SECOND = 1000; constexpr unsigned int SECOND = 1000;
constexpr unsigned int MINUTE = SECOND * 60; constexpr unsigned int MINUTE = SECOND * 60;
@ -33,7 +42,7 @@ constexpr int MAX_HUMIDITY_PERCENT = 70;
/// the amount of time a valve needs to open/close /// the amount of time a valve needs to open/close
constexpr int VALVE_DELAY_MS = 1 * SECOND / 4; constexpr int VALVE_DELAY_MS = 1 * SECOND / 4;
/// the amount of time the pump needs to start/stop /// the amount of time the pump needs to szcttart/stop
constexpr int PUMP_DELAY_MS = 1 * SECOND / 4; constexpr int PUMP_DELAY_MS = 1 * SECOND / 4;
/// the amount of time to water the plot (valve open and pump running) /// the amount of time to water the plot (valve open and pump running)
@ -53,152 +62,137 @@ constexpr uint8_t PUMP_LED_PIN = 3;
constexpr uint8_t OK_LED_PIN = 2; constexpr uint8_t OK_LED_PIN = 2;
/// Per-pot configuration constexpr struct Group GROUPS[] = {
constexpr PotConfig POT_CONFIGS[] = { { // 0
{ .enabled = true,
.valve_pin = 23,
.led_pin = 22, .led_pin = 22,
.sensor = { }, { // 1
.pin = A0, .enabled = false,
.calibration_dry = 540, .led_pin = 24,
.calibration_wet = 250, }, { // 2
} .enabled = false,
}, .led_pin = 26,
//{ }, { // 3
// .valve_pin = 25, .enabled = false,
// .led_pin = 24, .led_pin = 28,
// .sensor = { }, { // 4
// .pin = A1, .enabled = true,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 27,
// .led_pin = 26,
// .sensor = {
// .pin = A2,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 29,
// .led_pin = 28,
// .sensor = {
// .pin = A3,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
{
.valve_pin = 31,
.led_pin = 30, .led_pin = 30,
.sensor = { }, { // 5
.pin = A4, .enabled = false,
.calibration_dry = 520, .led_pin = 32,
.calibration_wet = 100, }, { // 6
} .enabled = false,
}, .led_pin = 34,
//{ }, { // 7
// .valve_pin = 33, .enabled = false,
// .led_pin = 32, .led_pin = 36,
// .sensor = { }, { // 8
// .pin = A5, .enabled = false,
// .calibration_dry = 520, .led_pin = 38,
// .calibration_wet = 100, }, { // 9
// } .enabled = true,
//},
//{
// .valve_pin = 35,
// .led_pin = 34,
// .sensor = {
// .pin = A6,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 37,
// .led_pin = 36,
// .sensor = {
// .pin = A7,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 39,
// .led_pin = 38,
// .sensor = {
// .pin = A8,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
{
.valve_pin = 41,
.led_pin = 40, .led_pin = 40,
.sensor = { }, { // 10
.pin = A9, .enabled = false,
.calibration_dry = 520, .led_pin = 42,
.calibration_wet = 100, }, { // 11
} .enabled = false,
}, .led_pin = 44,
//{ }, { // 12
// .valve_pin = 43, .enabled = true,
// .led_pin = 42,
// .sensor = {
// .pin = A10,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 45,
// .led_pin = 44,
// .sensor = {
// .pin = A11,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
{
.valve_pin = 47,
.led_pin = 46, .led_pin = 46,
.sensor = { }, { // 13
.pin = A12, .enabled = true,
.calibration_dry = 520,
.calibration_wet = 100,
}
},
{
.valve_pin = 49,
.led_pin = 48, .led_pin = 48,
.sensor = { }, { // 14
.pin = A13, .enabled = false,
.calibration_dry = 520, .led_pin = 50,
.calibration_wet = 100, }, { // 15
} .enabled = false,
.led_pin = 52,
}, },
//{
// .valve_pin = 51,
// .led_pin = 50,
// .sensor = {
// .pin = A14,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
//{
// .valve_pin = 53,
// .led_pin = 52,
// .sensor = {
// .pin = A15,
// .calibration_dry = 520,
// .calibration_wet = 100,
// }
//},
}; };
constexpr unsigned int POT_COUNT = sizeof(POT_CONFIGS) / sizeof(POT_CONFIGS[0]); constexpr struct Sensor SENSORS[] = {
{
.pin = A0,
.calibration_dry = 540,
.calibration_wet = 250,
.pot_group = 0,
}, {
.pin = A4,
.calibration_dry = 520,
.calibration_wet = 100,
.pot_group = 4,
}, {
.pin = A9,
.calibration_dry = 520,
.calibration_wet = 100,
.pot_group = 9,
}, {
.pin = A12,
.calibration_dry = 520,
.calibration_wet = 100,
.pot_group = 12,
}, {
.pin = A13,
.calibration_dry = 520,
.calibration_wet = 100,
.pot_group = 13,
},
// the rest of A0-A15 are not used
};
constexpr struct Valve VALVES[] = {
{
.pin = 23,
.pot_group = 0,
}, {
.pin = 25,
.pot_group = 1,
}, {
.pin = 27,
.pot_group = 2,
}, {
.pin = 29,
.pot_group = 3,
}, {
.pin = 31,
.pot_group = 4,
}, {
.pin = 33,
.pot_group = 5,
}, {
.pin = 35,
.pot_group = 6,
}, {
.pin = 37,
.pot_group = 7,
}, {
.pin = 39,
.pot_group = 8,
}, {
.pin = 41,
.pot_group = 9,
}, {
.pin = 43,
.pot_group = 10,
}, {
.pin = 45,
.pot_group = 11,
}, {
.pin = 47,
.pot_group = 12,
}, {
.pin = 49,
.pot_group = 13,
}, {
.pin = 51,
.pot_group = 14,
}, {
.pin = 53,
.pot_group = 15,
}
};

288
drop.ino
View file

@ -1,43 +1,179 @@
#include "config.hpp" #include "config.hpp"
/// a connected pot // TODO: configuration validation subroutine
typedef struct { // - sensors belong to an existing group
PotConfig *config; // - valves belong to an existing group
// - all groups have a sensor
constexpr unsigned int VALVE_COUNT = sizeof(VALVES) / sizeof(VALVES[0]);
constexpr unsigned int SENSOR_COUNT = sizeof(SENSORS) / sizeof(SENSORS[0]);
constexpr unsigned int GROUP_COUNT = sizeof(GROUPS) / sizeof(GROUPS[0]);
struct GroupState {
const Group *group_config;
/// pointer to first element of sensors array
const Sensor **sensors;
/// element count of sensors array
unsigned int sensor_count;
/// pointer to first element of valves array
const Valve **valves;
/// element count of valves array
unsigned int valve_count;
unsigned long last_watering; unsigned long last_watering;
// anything changing per pot goes here };
} Pot;
/// all connected pots /// all connected pots
Pot pots[POT_COUNT]; GroupState group_states[GROUP_COUNT];
void setup() { void turn_everything_off() {
Serial.begin(9600); set_pump(false);
Serial.println("");
Serial.println("Initializing..."); for (int i = 0; i < VALVE_COUNT; i++) {
set_valve(&VALVES[i], false);
}
}
/// (╯°□°)╯︵ ┻━┻
///
/// Will never return
void panic(const __FlashStringHelper *message) {
turn_everything_off();
// keep doing this until someone notices the blinking lights and looks at the serial output
while (true) {
Serial.print(F("PANIC: "));
Serial.println(message);
digitalWrite(PUMP_LED_PIN, HIGH);
digitalWrite(OK_LED_PIN, LOW);
delay(300);
digitalWrite(PUMP_LED_PIN, LOW);
digitalWrite(OK_LED_PIN, HIGH);
delay(300);
}
}
void setup_pinmodes(void) {
Serial.print(F("Setting pin modes..."));
pinMode(PUMP_LED_PIN, OUTPUT); pinMode(PUMP_LED_PIN, OUTPUT);
pinMode(PUMP_PIN, OUTPUT); pinMode(PUMP_PIN, OUTPUT);
pinMode(LED_BUILTIN, OUTPUT); pinMode(LED_BUILTIN, OUTPUT);
pinMode(OK_LED_PIN, OUTPUT); pinMode(OK_LED_PIN, OUTPUT);
set_pump(false); for (unsigned int i = 0; i < VALVE_COUNT; i++)
pinMode(VALVES[i].pin, OUTPUT);
for (unsigned int i = 0; i < SENSOR_COUNT; i++)
pinMode(SENSORS[i].pin, INPUT);
for (unsigned int i = 0; i < GROUP_COUNT; i++)
pinMode(GROUPS[i].led_pin, OUTPUT);
// link pots to their config Serial.println(F(" Done"));
for (unsigned int i = 0; i < POT_COUNT; i++) {
Pot *pot = &pots[i];
pot->config = &POT_CONFIGS[i];
pot->last_watering = 0;
pinMode(pot->config->valve_pin, OUTPUT);
pinMode(pot->config->led_pin, OUTPUT);
set_valve(pot->config->valve_pin, false);
}
} }
void loop() { void setup_config(void) {
Serial.print(F("Loading configuration..."));
bool found_enabled = false;
for (unsigned int group_index = 0; group_index < GROUP_COUNT; group_index++) {
struct GroupState *group = &group_states[group_index];
*group = {
.group_config = &GROUPS[group_index],
.sensors = NULL,
.sensor_count = 0,
.valves = NULL,
.valve_count = 0,
.last_watering = 0,
};
digitalWrite(group->group_config->led_pin, HIGH);
// link valves to group
for (unsigned int valve_index = 0; valve_index < VALVE_COUNT; valve_index++) {
if (VALVES[valve_index].pot_group != group_index)
continue;
group->valve_count++;
group->valves = (const Valve **) realloc(group->valves, group->valve_count * sizeof(Valve *));
if (group->valves == NULL)
panic(F("valve realloc failed"));
group->valves[group->valve_count - 1] = &VALVES[valve_index];
}
// link sensors to group
for (unsigned int sensor_index = 0; sensor_index < SENSOR_COUNT; sensor_index++) {
if (SENSORS[sensor_index].pot_group != group_index)
continue;
group->sensor_count++;
group->sensors = (const Sensor **) realloc(group->sensors, group->sensor_count * sizeof(Sensor *));
if (group->sensors == NULL)
panic(F("sensor realloc failed"));
group->sensors[group->sensor_count - 1] = &SENSORS[sensor_index];
}
// check that all enabled groups have valid configuration
if (group->group_config->enabled) {
found_enabled = true;
if (group->valve_count == 0)
panic(F("invalid configuration - no valves in enabled group!"));
if (group->sensor_count == 0)
panic(F("invalid configuration - no sensors in enabled group!"));
}
digitalWrite(group->group_config->led_pin, LOW);
}
if (!found_enabled)
panic(F("invalid configuration - all groups are disabled"));
for (unsigned int sensor_index = 0; sensor_index < SENSOR_COUNT; sensor_index++) {
if (SENSORS[sensor_index].pot_group >= GROUP_COUNT)
panic(F("sensor is mapped to group that does not exist"));
}
for (unsigned int valve_index = 0; valve_index < VALVE_COUNT; valve_index++) {
if (VALVES[valve_index].pot_group >= GROUP_COUNT)
panic(F("valve is mapped to group that does not exist"));
}
Serial.println(F(" Done"));
}
void setup(void) {
Serial.begin(9600);
Serial.println("");
Serial.println(F("Initializing..."));
setup_pinmodes();
Serial.print(F("Turning everything off in case of power cycle..."));
turn_everything_off();
setup_config();
Serial.println(F("Initialization completed."));
}
void water_group(GroupState *state) {
digitalWrite(LED_BUILTIN, HIGH);
for (unsigned int valve_index = 0; valve_index < VALVE_COUNT; valve_index++) {
const Valve *valve = state->valves[valve_index];
set_valve(valve, HIGH);
set_pump(HIGH);
delay(WATER_TIME_MS);
state->last_watering = millis();
set_pump(LOW);
set_valve(valve, LOW);
}
digitalWrite(LED_BUILTIN, LOW);
}
void loop(void) {
Serial.println(""); Serial.println("");
Serial.println("LOOP"); Serial.println("LOOP");
@ -45,66 +181,46 @@ void loop() {
delay(100); delay(100);
digitalWrite(OK_LED_PIN, LOW); digitalWrite(OK_LED_PIN, LOW);
for (unsigned int g = 0; g < GROUP_COUNT; g++) {
GroupState *state = &group_states[g];
if (!state->group_config->enabled)
continue;
for (unsigned int i = 0; i < POT_COUNT; i++) { digitalWrite(state->group_config->led_pin, HIGH);
Serial.print("Pot ");
Serial.println(i); Serial.print(F("Group "));
per_pot(pots[i]); Serial.print(g);
Serial.println(""); Serial.print(F(": "));
int humidity = get_group_humidity(state->sensors, state->sensor_count);
Serial.println(humidity);
if (state->last_watering + MIN_WATERING_INTERVAL_MS > millis()) {
Serial.println(F("watered recently -> not watering"));
} else if (humidity > MAX_HUMIDITY_PERCENT) {
Serial.println(F("too wet -> not watering"));
} else if (humidity < MIN_HUMIDITY_PERCENT) {
Serial.println(F("too dry -> watering"));
water_group(state);
} else if (state->last_watering + MAX_WATERING_INTERVAL_MS < millis()) {
Serial.println(F("not been watered for a long time -> watering"));
water_group(state);
} else {
Serial.println(F("happy plant"));
}
digitalWrite(state->group_config->led_pin, LOW);
} }
delay(LOOP_DELAY_MS); delay(LOOP_DELAY_MS);
} }
void per_pot(Pot &pot) {
if (pot.last_watering + MIN_WATERING_INTERVAL_MS > millis()) {
Serial.println(F("watered recently -> not watering"));
return;
}
int percentage = get_humidity(pot.config->sensor);
if (percentage > MAX_HUMIDITY_PERCENT) {
Serial.println(F("too wet -> not watering"));
} else if (percentage < MIN_HUMIDITY_PERCENT) {
Serial.println(F("too dry -> watering"));
water_pot(pot);
} else if (pot.last_watering + MAX_WATERING_INTERVAL_MS < millis()) {
Serial.println(F("not been watered for a long time -> watering"));
water_pot(pot);
} else {
Serial.println(F("happy plant"));
}
}
void water_pot(Pot &pot) {
digitalWrite(LED_BUILTIN, HIGH);
digitalWrite(pot.config->led_pin, HIGH);
set_valve(pot.config->valve_pin, HIGH);
set_pump(HIGH);
delay(WATER_TIME_MS);
pot.last_watering = millis();
set_pump(LOW);
set_valve(pot.config->valve_pin, LOW);
digitalWrite(pot.config->led_pin, LOW);
digitalWrite(LED_BUILTIN, LOW);
}
/// get humidity sensor value as a percentage /// get humidity sensor value as a percentage
int get_humidity(Sensor &sensor) { int get_humidity(const Sensor *&sensor) {
// take average of multiple measurements // take average of multiple measurements
int sensorVal {0}; int sensorVal {0};
for (unsigned int i = 0; i < MEASUREMENT_COUNT; i++) { for (unsigned int i = 0; i < MEASUREMENT_COUNT; i++) {
sensorVal += analogRead(sensor.pin); sensorVal += analogRead(sensor->pin);
Serial.print(F("Measurement "));
Serial.print(i);
Serial.print(F(" = "));
Serial.println(sensorVal);
delay(MEASUREMENT_DELAY); delay(MEASUREMENT_DELAY);
} }
@ -115,11 +231,15 @@ int get_humidity(Sensor &sensor) {
// Sensor has a range of e.g. 236 to 520 // Sensor has a range of e.g. 236 to 520
// We want to translate this to a scale or 0% to 100% // We want to translate this to a scale or 0% to 100%
// More info: https://www.arduino.cc/reference/en/language/functions/math/map/ // More info: https://www.arduino.cc/reference/en/language/functions/math/map/
sensorVal = map(sensorVal, sensor.calibration_wet, sensor.calibration_dry, 100, 0); return map(sensorVal, sensor->calibration_wet, sensor->calibration_dry, 100, 0);
Serial.print(F("Humidity: ")); }
Serial.print(sensorVal);
Serial.println(F("%")); int get_group_humidity(const Sensor **sensors, unsigned int sensor_count) {
return sensorVal; int sum = 0;
for (unsigned int s = 0; s < sensor_count; s++) {
sum += get_humidity(sensors[s]);
}
return sum / sensor_count;
} }
void set_pump(bool on) { void set_pump(bool on) {
@ -130,11 +250,11 @@ void set_pump(bool on) {
delay(PUMP_DELAY_MS); delay(PUMP_DELAY_MS);
} }
void set_valve(uint8_t valve, bool open) { void set_valve(const Valve *valve, bool open) {
Serial.print("setting valve on pin "); Serial.print("setting valve on pin ");
Serial.print(valve); Serial.print(valve->pin);
Serial.print(" to state "); Serial.print(" to state ");
Serial.println(open); Serial.println(open);
digitalWrite(valve, open ? LOW : HIGH); digitalWrite(valve->pin, open ? LOW : HIGH);
delay(VALVE_DELAY_MS); delay(VALVE_DELAY_MS);
} }