103 lines
4.3 KiB
Python
103 lines
4.3 KiB
Python
import typing
|
|
|
|
import pandas
|
|
from dataclasses import dataclass
|
|
from math import floor
|
|
from datetime import datetime
|
|
|
|
def load_score_log(path: str) -> pandas.DataFrame:
|
|
return pandas.read_csv(path, sep=',',
|
|
dtype={'score': int, 'sourcename': str, 'name': str, 'mapx': int, 'mapy': int},
|
|
parse_dates=['when'], date_format='%d/%m/%Y %H:%M')
|
|
|
|
def generate_station_stats(score_log: pandas.DataFrame) -> pandas.DataFrame:
|
|
# every station in the score log should have a first visit, so create summary based on that
|
|
summary = score_log[score_log['sourcename'] == 'First Visit'][['name', 'mapx', 'mapy', 'when']]
|
|
summary.rename(columns={'when': 'first_visit'}, inplace=True)
|
|
|
|
# add total score
|
|
summary = pandas.merge(summary, score_log[['name', 'score']].groupby('name').sum(), on='name', validate='1:1')
|
|
summary.rename(columns={'score': 'total_score'}, inplace=True)
|
|
|
|
boosts = score_log[score_log['sourcename'] == 'Output Boost'][['name', 'score']].groupby('name')
|
|
|
|
# add total boosts
|
|
total_boosts = boosts.sum()
|
|
total_boosts['totalboostduration'] = total_boosts['score'].apply(lambda x: 10 * x)
|
|
total_boosts.rename(columns={'score': 'totalboostscore'}, inplace=True)
|
|
summary = pandas.merge(summary, total_boosts, on='name')
|
|
|
|
# add max boosts
|
|
max_boosts = boosts.max()
|
|
max_boosts['maxboostduration'] = max_boosts['score'].apply(lambda x: 10 * x)
|
|
max_boosts.rename(columns={'score': 'maxboostscore'}, inplace=True)
|
|
summary = pandas.merge(summary, max_boosts, on='name')
|
|
|
|
visits = score_log[(score_log['sourcename'] == 'Visit') | (score_log['sourcename'] == 'First Visit')][['name', 'score']].groupby('name')
|
|
|
|
# add total visits (count)
|
|
summary = pandas.merge(summary, visits.count(), on='name', validate='1:1')
|
|
summary.rename(columns={'score': 'totalvisits'}, inplace=True)
|
|
|
|
captures = score_log[score_log['sourcename'] == 'Capture'][['name', 'score']].groupby('name')
|
|
|
|
# add captures (count)
|
|
summary = pandas.merge(summary, captures.count(), on='name', validate='1:1')
|
|
summary.rename(columns={'score': 'captures'}, inplace=True)
|
|
|
|
# add max held duration (max capture score)
|
|
summary = pandas.merge(summary, captures.max(), on='name', validate='1:1')
|
|
summary.rename(columns={'score': 'maxheldduration'}, inplace=True)
|
|
|
|
# add total held duration (sum capture score)
|
|
summary = pandas.merge(summary, captures.sum(), on='name', validate='1:1')
|
|
summary.rename(columns={'score': 'totalheldduration'}, inplace=True)
|
|
|
|
return summary
|
|
|
|
def generate_score_per_second(score_log: pandas.DataFrame) -> pandas.DataFrame:
|
|
@dataclass
|
|
class ScoreSecond:
|
|
name: str
|
|
sourcename: str
|
|
when: datetime
|
|
score: float
|
|
once: bool
|
|
mapx: int
|
|
mapy: int
|
|
|
|
def row_to_scoreseconds(row, score_per) -> typing.Iterator[ScoreSecond]:
|
|
seconds = int(floor(row.score / score_per))
|
|
assert row.score % score_per < 0.1
|
|
when = int(floor(row.when.timestamp()))
|
|
for elapsed in range(0, seconds):
|
|
timestamp = pandas.Timestamp(when - elapsed, unit='s')
|
|
yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=timestamp,
|
|
score=score_per, once=False)
|
|
|
|
def gen_scoreseconds() -> typing.Iterator[ScoreSecond]:
|
|
for row in score_log.itertuples():
|
|
if row.sourcename == "Capture":
|
|
yield from row_to_scoreseconds(row, 1.0)
|
|
elif row.sourcename == "Output Boost":
|
|
yield from row_to_scoreseconds(row, 0.1)
|
|
else: # one-off
|
|
yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=row.when,
|
|
score=row.score, once=True)
|
|
|
|
scoreseconds = pandas.DataFrame(gen_scoreseconds())
|
|
scoreseconds.sort_values(by=['when'], inplace=True)
|
|
scoreseconds.reset_index(drop=True, inplace=True)
|
|
|
|
acc_col = pandas.Series([0.0]).repeat(len(scoreseconds)).reset_index(drop=True)
|
|
|
|
acc = 0.0
|
|
for i, row in enumerate(scoreseconds.itertuples()):
|
|
acc += row.score
|
|
acc_col[i] = acc
|
|
|
|
scoreseconds['accumulated_score'] = acc_col
|
|
del acc
|
|
del acc_col
|
|
|
|
return scoreseconds
|