import typing import pandas from dataclasses import dataclass from math import floor from datetime import datetime def _add_accumulated_score(df: pandas.DataFrame): acc_col = pandas.Series([0.0]).repeat(len(df)).reset_index(drop=True) acc = 0.0 for i, row in enumerate(df.itertuples()): acc += row.score acc_col[i] = acc df['accumulated_score'] = acc_col def load_score_log(path: str) -> pandas.DataFrame: return pandas.read_csv(path, sep=',', dtype={'score': int, 'sourcename': str, 'name': str, 'mapx': int, 'mapy': int}, parse_dates=['when'], date_format='%d/%m/%Y %H:%M') def _calc_duration(row) -> int: score_per = None if row['sourcename'] == 'Capture': score_per = 1.0 elif row['sourcename'] == 'Output Boost': score_per = 0.1 else: return 0 return int(floor(row['score'] / score_per)) def _calc_event_start(row) -> pandas.Timestamp: return pandas.Timestamp(row['when'].timestamp() - row['seconds'], unit='s') def extend_score_log(scores: pandas.DataFrame): scores.sort_values('when', inplace=True) _add_accumulated_score(scores) scores['seconds'] = scores.apply(_calc_duration, axis=1) scores['when_start'] = scores.apply(_calc_event_start, axis=1) def generate_station_stats(score_log: pandas.DataFrame) -> pandas.DataFrame: station_count = len(score_log['name'].unique()) # every station in the score log should have a first visit, so create summary based on that summary = score_log[score_log['sourcename'] == 'First Visit'][['name', 'mapx', 'mapy', 'when']] summary.rename(columns={'when': 'first_visit'}, inplace=True) assert len(summary) == station_count common_join_args = {'on': 'name', 'how': 'left', 'validate': '1:1'} # add total score summary = pandas.merge(summary, score_log[['name', 'score']].groupby('name').sum(), **common_join_args) summary.rename(columns={'score': 'total_score'}, inplace=True) assert len(summary) == station_count boosts = score_log[score_log['sourcename'] == 'Output Boost'][['name', 'score']].groupby('name') # add total boosts total_boosts = boosts.sum() total_boosts['totalboostduration'] = total_boosts['score'].apply(lambda x: 10 * x) total_boosts.rename(columns={'score': 'totalboostscore'}, inplace=True) summary = pandas.merge(summary, total_boosts, **common_join_args) assert len(summary) == station_count # add max boosts max_boosts = boosts.max() max_boosts['maxboostduration'] = max_boosts['score'].apply(lambda x: 10 * x) max_boosts.rename(columns={'score': 'maxboostscore'}, inplace=True) summary = pandas.merge(summary, max_boosts, **common_join_args) assert len(summary) == station_count visits = score_log[(score_log['sourcename'] == 'Visit') | (score_log['sourcename'] == 'First Visit')][ ['name', 'score']].groupby('name') # add total visits (count) summary = pandas.merge(summary, visits.count(), **common_join_args) summary.rename(columns={'score': 'totalvisits'}, inplace=True) assert len(summary) == station_count captures = score_log[score_log['sourcename'] == 'Capture'][['name', 'score']].groupby('name') # add captures (count) summary = pandas.merge(summary, captures.count(), **common_join_args) summary.rename(columns={'score': 'captures'}, inplace=True) assert len(summary) == station_count # add max held duration (max capture score) summary = pandas.merge(summary, captures.max(), **common_join_args) summary.rename(columns={'score': 'maxheldduration'}, inplace=True) assert len(summary) == station_count # add total held duration (sum capture score) summary = pandas.merge(summary, captures.sum(), **common_join_args) summary.rename(columns={'score': 'totalheldduration'}, inplace=True) assert len(summary) == station_count return summary def generate_score_per_second(score_log: pandas.DataFrame) -> pandas.DataFrame: @dataclass class ScoreSecond: name: str sourcename: str when: datetime score: float once: bool event_start: bool mapx: int mapy: int def row_to_scoreseconds(row) -> typing.Iterator[ScoreSecond]: score_per = row.score / row.seconds for elapsed in range(0, row.seconds): timestamp = pandas.Timestamp(row.when_start.timestamp() + elapsed, unit='s') yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=timestamp, score=score_per, once=False, event_start=(elapsed == 0)) def gen_scoreseconds() -> typing.Iterator[ScoreSecond]: for row in score_log.itertuples(): if row.seconds == 0: # one-off yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=row.when, score=row.score, once=True, event_start=True) else: yield from row_to_scoreseconds(row) scoreseconds = pandas.DataFrame(gen_scoreseconds()) scoreseconds.sort_values(by=['when'], inplace=True) scoreseconds.reset_index(drop=True, inplace=True) _add_accumulated_score(scoreseconds) return scoreseconds