interpolate locations, bunch of plots

This commit is contained in:
Vinzenz Schroeter 2025-08-27 22:04:01 +02:00
parent 0dcc79eee2
commit 63c59f4ce2
2 changed files with 602 additions and 111 deletions

119
foo.py
View file

@ -6,6 +6,13 @@ from math import floor
from datetime import datetime
def timestamp_range_seconds(start: pandas.Timestamp, end: pandas.Timestamp) -> typing.Iterator[pandas.Timestamp]:
assert end >= start
start = int(floor(start.timestamp()))
end = int(floor(end.timestamp()))
for second in range(start, end):
yield pandas.Timestamp(second, unit='s')
def _add_accumulated_score(df: pandas.DataFrame):
acc_col = pandas.Series([0.0]).repeat(len(df)).reset_index(drop=True)
@ -16,33 +23,32 @@ def _add_accumulated_score(df: pandas.DataFrame):
df['accumulated_score'] = acc_col
def load_score_log(path: str) -> pandas.DataFrame:
return pandas.read_csv(path, sep=',',
dtype={'score': int, 'sourcename': str, 'name': str, 'mapx': int, 'mapy': int},
parse_dates=['when'], date_format='%d/%m/%Y %H:%M')
def _calc_duration(row) -> int:
score_per = None
if row['sourcename'] == 'Capture':
score_per = 1.0
elif row['sourcename'] == 'Output Boost':
score_per = 0.1
def get_score_per(sourcename: str) -> float | None:
if sourcename == 'Capture':
return 1.0
elif sourcename == 'Output Boost':
return 0.1
else:
return 0
return int(floor(row['score'] / score_per))
def _calc_event_start(row) -> pandas.Timestamp:
return pandas.Timestamp(row['when'].timestamp() - row['seconds'], unit='s')
return None
def extend_score_log(scores: pandas.DataFrame):
scores.sort_values('when', inplace=True)
_add_accumulated_score(scores)
def _calc_duration(row) -> int:
score_per = get_score_per(row['sourcename'])
if score_per is None:
return 1
return int(floor(row['score'] / score_per))
def _calc_event_start(row) -> pandas.Timestamp:
return pandas.Timestamp(row['when'].timestamp() - row['seconds'], unit='s')
scores['seconds'] = scores.apply(_calc_duration, axis=1)
scores['when_start'] = scores.apply(_calc_event_start, axis=1)
@ -70,14 +76,12 @@ def generate_station_stats(score_log: pandas.DataFrame) -> pandas.DataFrame:
total_boosts['totalboostduration'] = total_boosts['score'].apply(lambda x: 10 * x)
total_boosts.rename(columns={'score': 'totalboostscore'}, inplace=True)
summary = pandas.merge(summary, total_boosts, **common_join_args)
assert len(summary) == station_count
# add max boosts
max_boosts = boosts.max()
max_boosts['maxboostduration'] = max_boosts['score'].apply(lambda x: 10 * x)
max_boosts.rename(columns={'score': 'maxboostscore'}, inplace=True)
summary = pandas.merge(summary, max_boosts, **common_join_args)
assert len(summary) == station_count
visits = score_log[(score_log['sourcename'] == 'Visit') | (score_log['sourcename'] == 'First Visit')][
['name', 'score']].groupby('name')
@ -85,19 +89,16 @@ def generate_station_stats(score_log: pandas.DataFrame) -> pandas.DataFrame:
# add total visits (count)
summary = pandas.merge(summary, visits.count(), **common_join_args)
summary.rename(columns={'score': 'totalvisits'}, inplace=True)
assert len(summary) == station_count
captures = score_log[score_log['sourcename'] == 'Capture'][['name', 'score']].groupby('name')
# add captures (count)
summary = pandas.merge(summary, captures.count(), **common_join_args)
summary.rename(columns={'score': 'captures'}, inplace=True)
assert len(summary) == station_count
# add max held duration (max capture score)
summary = pandas.merge(summary, captures.max(), **common_join_args)
summary.rename(columns={'score': 'maxheldduration'}, inplace=True)
assert len(summary) == station_count
# add total held duration (sum capture score)
summary = pandas.merge(summary, captures.sum(), **common_join_args)
@ -119,20 +120,23 @@ def generate_score_per_second(score_log: pandas.DataFrame) -> pandas.DataFrame:
mapx: int
mapy: int
def row_to_scoreseconds(row) -> typing.Iterator[ScoreSecond]:
score_per = row.score / row.seconds
for elapsed in range(0, row.seconds):
timestamp = pandas.Timestamp(row.when_start.timestamp() + elapsed, unit='s')
yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=timestamp,
score=score_per, once=False, event_start=(elapsed == 0))
def gen_scoreseconds() -> typing.Iterator[ScoreSecond]:
for row in score_log.itertuples():
if row.seconds == 0: # one-off
# TODO: the code below should work with 0s now
if row.seconds < 2: # one-off
yield ScoreSecond(name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy, when=row.when,
score=row.score, once=True, event_start=True)
else:
yield from row_to_scoreseconds(row)
continue
once = row.seconds == 1
score_per = get_score_per(row.sourcename)
event_start = True
for when in timestamp_range_seconds(row.when_start, row.when):
yield ScoreSecond(when=when, once=once, event_start=event_start,
name=row.name, sourcename=row.sourcename, mapx=row.mapx, mapy=row.mapy,
score=score_per, )
event_start = False
scoreseconds = pandas.DataFrame(gen_scoreseconds())
scoreseconds.sort_values(by=['when'], inplace=True)
@ -140,3 +144,56 @@ def generate_score_per_second(score_log: pandas.DataFrame) -> pandas.DataFrame:
_add_accumulated_score(scoreseconds)
return scoreseconds
def get_known_player_locations(score_log):
locations = score_log[score_log['mapx'] != 0][['name', 'when_start', 'mapx', 'mapy']].copy()
locations.rename(columns={'when_start': 'when'}, inplace=True)
locations.sort_values(by=['when'], inplace=True)
locations.reset_index(drop=True, inplace=True)
return locations
def interpolate_player_locations(locations: pandas.DataFrame) -> pandas.DataFrame:
from dataclasses import dataclass
IGNORED_GAP_SECONDS = 60 * 60 * 1
@dataclass
class LocationSecond:
when: pandas.Timestamp
mapx: int
mapy: int
def interpolate_locations():
skipped = False
for pair in locations.rolling(window=2, closed='right'):
if not skipped:
skipped = True
continue
left = pair.iloc[0]
right = pair.iloc[1]
start = left['when']
end = right['when']
seconds = end.timestamp() - start.timestamp()
if seconds > IGNORED_GAP_SECONDS:
end = start
seconds = 1
x = left['mapx']
y = left['mapy']
if seconds < 0.1:
x_increment = 0
y_increment = 0
else:
x_increment = (right['mapx'] - left['mapx']) / seconds
y_increment = (right['mapy'] - left['mapy']) / seconds
for elapsed, timestamp in enumerate(timestamp_range_seconds(start, end)):
yield LocationSecond(when=timestamp, mapx=x, mapy=y)
x += x_increment
y += y_increment
return pandas.DataFrame(interpolate_locations())

File diff suppressed because one or more lines are too long