///! Process syscalls use alloc::arc::Arc; use alloc::boxed::Box; use collections::Vec; use core::mem; use core::str; use spin::Mutex; use arch; use arch::externs::memcpy; use arch::memory::{allocate_frame, allocate_frames, deallocate_frames, Frame}; use arch::paging::{ActivePageTable, InactivePageTable, Page, PhysicalAddress, VirtualAddress, entry}; use arch::paging::temporary_page::TemporaryPage; use arch::start::usermode; use context; use context::memory::Grant; use elf::{self, program_header}; use scheme; use syscall; use syscall::data::Stat; use syscall::error::*; use syscall::flag::{CLONE_VFORK, CLONE_VM, CLONE_FS, CLONE_FILES, MAP_WRITE, MAP_WRITE_COMBINE, WNOHANG}; use syscall::validate::{validate_slice, validate_slice_mut}; pub fn brk(address: usize) -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); let current = if let Some(ref heap_shared) = context.heap { heap_shared.with(|heap| { heap.start_address().get() + heap.size() }) } else { panic!("user heap not initialized"); }; if address == 0 { //println!("Brk query {:X}", current); Ok(current) } else if address >= arch::USER_HEAP_OFFSET { //TODO: out of memory errors if let Some(ref heap_shared) = context.heap { heap_shared.with(|heap| { heap.resize(address - arch::USER_HEAP_OFFSET, true, true); }); } else { panic!("user heap not initialized"); } Ok(address) } else { Err(Error::new(ENOMEM)) } } pub fn clone(flags: usize, stack_base: usize) -> Result { let ppid; let pid; { let uid; let gid; let arch; let vfork; let mut kfx_option = None; let mut kstack_option = None; let mut offset = 0; let mut image = vec![]; let mut heap_option = None; let mut stack_option = None; let grants; let cwd; let env; let files; // Copy from old process { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); ppid = context.id; uid = context.uid; gid = context.gid; arch = context.arch.clone(); if let Some(ref fx) = context.kfx { let mut new_fx = unsafe { Box::from_raw(::alloc::heap::allocate(512, 16) as *mut [u8; 512]) }; for (new_b, b) in new_fx.iter_mut().zip(fx.iter()) { *new_b = *b; } kfx_option = Some(new_fx); } if let Some(ref stack) = context.kstack { offset = stack_base - stack.as_ptr() as usize - mem::size_of::(); // Add clone ret let mut new_stack = stack.clone(); unsafe { let func_ptr = new_stack.as_mut_ptr().offset(offset as isize); *(func_ptr as *mut usize) = arch::interrupt::syscall::clone_ret as usize; } kstack_option = Some(new_stack); } if flags & CLONE_VM == CLONE_VM { for memory_shared in context.image.iter() { image.push(memory_shared.clone()); } if let Some(ref heap_shared) = context.heap { heap_option = Some(heap_shared.clone()); } } else { for memory_shared in context.image.iter() { memory_shared.with(|memory| { let mut new_memory = context::memory::Memory::new( VirtualAddress::new(memory.start_address().get() + arch::USER_TMP_OFFSET), memory.size(), entry::PRESENT | entry::NO_EXECUTE | entry::WRITABLE, true, false ); unsafe { arch::externs::memcpy(new_memory.start_address().get() as *mut u8, memory.start_address().get() as *const u8, memory.size()); } new_memory.remap(memory.flags(), true); image.push(new_memory.to_shared()); }); } if let Some(ref heap_shared) = context.heap { heap_shared.with(|heap| { let mut new_heap = context::memory::Memory::new( VirtualAddress::new(arch::USER_TMP_HEAP_OFFSET), heap.size(), entry::PRESENT | entry::NO_EXECUTE | entry::WRITABLE, true, false ); unsafe { arch::externs::memcpy(new_heap.start_address().get() as *mut u8, heap.start_address().get() as *const u8, heap.size()); } new_heap.remap(heap.flags(), true); heap_option = Some(new_heap.to_shared()); }); } } if let Some(ref stack) = context.stack { let mut new_stack = context::memory::Memory::new( VirtualAddress::new(arch::USER_TMP_STACK_OFFSET), stack.size(), entry::PRESENT | entry::NO_EXECUTE | entry::WRITABLE, true, false ); unsafe { arch::externs::memcpy(new_stack.start_address().get() as *mut u8, stack.start_address().get() as *const u8, stack.size()); } new_stack.remap(stack.flags(), true); stack_option = Some(new_stack); } if flags & CLONE_VM == CLONE_VM { grants = context.grants.clone(); } else { grants = Arc::new(Mutex::new(Vec::new())); } if flags & CLONE_FS == CLONE_FS { cwd = context.cwd.clone(); } else { cwd = Arc::new(Mutex::new(context.cwd.lock().clone())); } if flags & CLONE_VM == CLONE_VM { env = context.env.clone(); } else { env = Arc::new(Mutex::new(context.env.lock().clone())); } if flags & CLONE_FILES == CLONE_FILES { files = context.files.clone(); } else { files = Arc::new(Mutex::new(context.files.lock().clone())); } } // If not cloning files, dup to get a new number from scheme // This has to be done outside the context lock to prevent deadlocks if flags & CLONE_FILES == 0 { for (fd, mut file_option) in files.lock().iter_mut().enumerate() { let new_file_option = if let Some(file) = *file_option { let result = { let scheme = { let schemes = scheme::schemes(); let scheme = schemes.get(file.scheme).ok_or(Error::new(EBADF))?; scheme.clone() }; let result = scheme.dup(file.number); result }; match result { Ok(new_number) => { Some(context::file::File { scheme: file.scheme, number: new_number }) }, Err(err) => { println!("clone: failed to dup {}: {:?}", fd, err); None } } } else { None }; *file_option = new_file_option; } } // If vfork, block the current process // This has to be done after the operations that may require context switches if flags & CLONE_VFORK == CLONE_VFORK { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let mut context = context_lock.write(); context.status = context::Status::Blocked; vfork = true; } else { vfork = false; } // Set up new process { let mut contexts = context::contexts_mut(); let context_lock = contexts.new_context()?; let mut context = context_lock.write(); pid = context.id; context.ppid = ppid; context.uid = uid; context.gid = gid; context.status = context::Status::Runnable; context.vfork = vfork; context.arch = arch; let mut active_table = unsafe { ActivePageTable::new() }; let mut temporary_page = TemporaryPage::new(Page::containing_address(VirtualAddress::new(0x8_0000_0000))); let mut new_table = { let frame = allocate_frame().expect("no more frames in syscall::clone new_table"); InactivePageTable::new(frame, &mut active_table, &mut temporary_page) }; context.arch.set_page_table(unsafe { new_table.address() }); // Copy kernel mapping { let frame = active_table.p4()[510].pointed_frame().expect("kernel table not mapped"); let flags = active_table.p4()[510].flags(); active_table.with(&mut new_table, &mut temporary_page, |mapper| { mapper.p4_mut()[510].set(frame, flags); }); } if let Some(fx) = kfx_option.take() { context.arch.set_fx(fx.as_ptr() as usize); context.kfx = Some(fx); } // Set kernel stack if let Some(stack) = kstack_option.take() { context.arch.set_stack(stack.as_ptr() as usize + offset); context.kstack = Some(stack); } // Setup heap if flags & CLONE_VM == CLONE_VM { // Copy user image mapping, if found if ! image.is_empty() { let frame = active_table.p4()[0].pointed_frame().expect("user image not mapped"); let flags = active_table.p4()[0].flags(); active_table.with(&mut new_table, &mut temporary_page, |mapper| { mapper.p4_mut()[0].set(frame, flags); }); } context.image = image; // Copy user heap mapping, if found if let Some(heap_shared) = heap_option { let frame = active_table.p4()[1].pointed_frame().expect("user heap not mapped"); let flags = active_table.p4()[1].flags(); active_table.with(&mut new_table, &mut temporary_page, |mapper| { mapper.p4_mut()[1].set(frame, flags); }); context.heap = Some(heap_shared); } if ! grants.lock().is_empty() { let frame = active_table.p4()[2].pointed_frame().expect("user heap not mapped"); let flags = active_table.p4()[2].flags(); active_table.with(&mut new_table, &mut temporary_page, |mapper| { mapper.p4_mut()[1].set(frame, flags); }); } context.grants = grants; } else { // Copy percpu mapping { extern { /// The starting byte of the thread data segment static mut __tdata_start: u8; /// The ending byte of the thread BSS segment static mut __tbss_end: u8; } let size = unsafe { & __tbss_end as *const _ as usize - & __tdata_start as *const _ as usize }; let start = arch::KERNEL_PERCPU_OFFSET + arch::KERNEL_PERCPU_SIZE * ::cpu_id(); let end = start + size; let start_page = Page::containing_address(VirtualAddress::new(start)); let end_page = Page::containing_address(VirtualAddress::new(end - 1)); for page in Page::range_inclusive(start_page, end_page) { let frame = active_table.translate_page(page).expect("kernel percpu not mapped"); active_table.with(&mut new_table, &mut temporary_page, |mapper| { mapper.map_to(page, frame, entry::PRESENT | entry::NO_EXECUTE | entry::WRITABLE); }); } } // Move copy of image for memory_shared in image.iter_mut() { memory_shared.with(|memory| { let start = VirtualAddress::new(memory.start_address().get() - arch::USER_TMP_OFFSET + arch::USER_OFFSET); memory.move_to(start, &mut new_table, &mut temporary_page, true); }); } context.image = image; // Move copy of heap if let Some(heap_shared) = heap_option { heap_shared.with(|heap| { heap.move_to(VirtualAddress::new(arch::USER_HEAP_OFFSET), &mut new_table, &mut temporary_page, true); }); context.heap = Some(heap_shared); } } // Setup user stack if let Some(mut stack) = stack_option { stack.move_to(VirtualAddress::new(arch::USER_STACK_OFFSET), &mut new_table, &mut temporary_page, true); context.stack = Some(stack); } context.cwd = cwd; context.env = env; context.files = files; } } unsafe { context::switch(); } Ok(pid) } pub fn exit(status: usize) -> ! { { let contexts = context::contexts(); let (vfork, ppid) = { let context_lock = contexts.current().expect("tried to exit without context"); let mut context = context_lock.write(); context.image.clear(); drop(context.heap.take()); drop(context.stack.take()); context.grants = Arc::new(Mutex::new(Vec::new())); context.files = Arc::new(Mutex::new(Vec::new())); context.status = context::Status::Exited(status); let vfork = context.vfork; context.vfork = false; (vfork, context.ppid) }; if vfork { if let Some(context_lock) = contexts.get(ppid) { let mut context = context_lock.write(); if context.status == context::Status::Blocked { context.status = context::Status::Runnable; } else { println!("{} not blocked for exit vfork unblock", ppid); } } else { println!("{} not found for exit vfork unblock", ppid); } } } unsafe { context::switch(); } unreachable!(); } pub fn exec(path: &[u8], arg_ptrs: &[[usize; 2]]) -> Result { let entry; let mut sp = arch::USER_STACK_OFFSET + arch::USER_STACK_SIZE - 256; { let mut args = Vec::new(); for arg_ptr in arg_ptrs { let arg = validate_slice(arg_ptr[0] as *const u8, arg_ptr[1])?; args.push(arg.to_vec()); // Must be moved into kernel space before exec unmaps all memory } let file = syscall::open(path, 0)?; let mut stat = Stat::default(); syscall::fstat(file, &mut stat)?; //TODO: Only read elf header, not entire file. Then read required segments let mut data = vec![0; stat.st_size as usize]; syscall::read(file, &mut data)?; let _ = syscall::close(file); match elf::Elf::from(&data) { Ok(elf) => { entry = elf.entry(); drop(path); // Drop so that usage is not allowed after unmapping context drop(arg_ptrs); // Drop so that usage is not allowed after unmapping context let contexts = context::contexts(); let (vfork, ppid) = { let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let mut context = context_lock.write(); // Unmap previous image and stack context.image.clear(); drop(context.heap.take()); drop(context.stack.take()); context.grants = Arc::new(Mutex::new(Vec::new())); // Map and copy new segments for segment in elf.segments() { if segment.p_type == program_header::PT_LOAD { let mut memory = context::memory::Memory::new( VirtualAddress::new(segment.p_vaddr as usize), segment.p_memsz as usize, entry::NO_EXECUTE | entry::WRITABLE, true, true ); unsafe { // Copy file data memcpy(segment.p_vaddr as *mut u8, (elf.data.as_ptr() as usize + segment.p_offset as usize) as *const u8, segment.p_filesz as usize); } let mut flags = entry::NO_EXECUTE | entry::USER_ACCESSIBLE; if segment.p_flags & program_header::PF_R == program_header::PF_R { flags.insert(entry::PRESENT); } // W ^ X. If it is executable, do not allow it to be writable, even if requested if segment.p_flags & program_header::PF_X == program_header::PF_X { flags.remove(entry::NO_EXECUTE); } else if segment.p_flags & program_header::PF_W == program_header::PF_W { flags.insert(entry::WRITABLE); } memory.remap(flags, true); context.image.push(memory.to_shared()); } } // Map heap context.heap = Some(context::memory::Memory::new( VirtualAddress::new(arch::USER_HEAP_OFFSET), 0, entry::NO_EXECUTE | entry::WRITABLE | entry::USER_ACCESSIBLE, true, true ).to_shared()); // Map stack context.stack = Some(context::memory::Memory::new( VirtualAddress::new(arch::USER_STACK_OFFSET), arch::USER_STACK_SIZE, entry::NO_EXECUTE | entry::WRITABLE | entry::USER_ACCESSIBLE, true, true )); let mut arg_size = 0; for arg in args.iter().rev() { sp -= mem::size_of::(); unsafe { *(sp as *mut usize) = arch::USER_ARG_OFFSET + arg_size; } sp -= mem::size_of::(); unsafe { *(sp as *mut usize) = arg.len(); } arg_size += arg.len(); } sp -= mem::size_of::(); unsafe { *(sp as *mut usize) = args.len(); } if arg_size > 0 { let mut memory = context::memory::Memory::new( VirtualAddress::new(arch::USER_ARG_OFFSET), arg_size, entry::NO_EXECUTE | entry::WRITABLE, true, true ); let mut arg_offset = 0; for arg in args.iter().rev() { unsafe { memcpy((arch::USER_ARG_OFFSET + arg_offset) as *mut u8, arg.as_ptr(), arg.len()); } arg_offset += arg.len(); } memory.remap(entry::NO_EXECUTE | entry::USER_ACCESSIBLE, true); context.image.push(memory.to_shared()); } let vfork = context.vfork; context.vfork = false; (vfork, context.ppid) }; if vfork { if let Some(context_lock) = contexts.get(ppid) { let mut context = context_lock.write(); if context.status == context::Status::Blocked { context.status = context::Status::Runnable; } else { println!("{} not blocked for exec vfork unblock", ppid); } } else { println!("{} not found for exec vfork unblock", ppid); } } }, Err(err) => { println!("failed to execute {}: {}", unsafe { str::from_utf8_unchecked(path) }, err); return Err(Error::new(ENOEXEC)); } } } // Go to usermode unsafe { usermode(entry, sp); } } pub fn getgid() -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); Ok(context.gid as usize) } pub fn getpid() -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); Ok(context.id) } pub fn getuid() -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); Ok(context.uid as usize) } pub fn iopl(_level: usize) -> Result { //TODO Ok(0) } pub fn physalloc(size: usize) -> Result { allocate_frames((size + 4095)/4096).ok_or(Error::new(ENOMEM)).map(|frame| frame.start_address().get()) } pub fn physfree(physical_address: usize, size: usize) -> Result { deallocate_frames(Frame::containing_address(PhysicalAddress::new(physical_address)), (size + 4095)/4096); //TODO: Check that no double free occured Ok(0) } //TODO: verify exlusive access to physical memory pub fn physmap(physical_address: usize, size: usize, flags: usize) -> Result { if size == 0 { Ok(0) } else { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); let mut grants = context.grants.lock(); let from_address = (physical_address/4096) * 4096; let offset = physical_address - from_address; let full_size = ((offset + size + 4095)/4096) * 4096; let mut to_address = arch::USER_GRANT_OFFSET; let mut entry_flags = entry::PRESENT | entry::NO_EXECUTE | entry::USER_ACCESSIBLE; if flags & MAP_WRITE == MAP_WRITE { entry_flags |= entry::WRITABLE; } if flags & MAP_WRITE_COMBINE == MAP_WRITE_COMBINE { entry_flags |= entry::HUGE_PAGE; } for i in 0 .. grants.len() { let start = grants[i].start_address().get(); if to_address + full_size < start { grants.insert(i, Grant::physmap( PhysicalAddress::new(from_address), VirtualAddress::new(to_address), full_size, entry_flags )); return Ok(to_address + offset); } else { let pages = (grants[i].size() + 4095) / 4096; let end = start + pages * 4096; to_address = end; } } grants.push(Grant::physmap( PhysicalAddress::new(from_address), VirtualAddress::new(to_address), full_size, entry_flags )); Ok(to_address + offset) } } pub fn physunmap(virtual_address: usize) -> Result { if virtual_address == 0 { Ok(0) } else { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let context = context_lock.read(); let mut grants = context.grants.lock(); for i in 0 .. grants.len() { let start = grants[i].start_address().get(); let end = start + grants[i].size(); if virtual_address >= start && virtual_address < end { grants.remove(i).unmap(); return Ok(0); } } Err(Error::new(EFAULT)) } } pub fn sched_yield() -> Result { unsafe { context::switch(); } Ok(0) } pub fn setgid(gid: u32) -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let mut context = context_lock.write(); if context.gid == 0 { context.gid = gid; Ok(0) } else if context.gid == gid { Ok(0) } else { Err(Error::new(EPERM)) } } pub fn setuid(uid: u32) -> Result { let contexts = context::contexts(); let context_lock = contexts.current().ok_or(Error::new(ESRCH))?; let mut context = context_lock.write(); if context.uid == 0 { context.uid = uid; Ok(0) } else if context.uid == uid { Ok(0) } else { Err(Error::new(EPERM)) } } pub fn virttophys(virtual_address: usize) -> Result { let active_table = unsafe { ActivePageTable::new() }; match active_table.translate(VirtualAddress::new(virtual_address)) { Some(physical_address) => Ok(physical_address.get()), None => Err(Error::new(EFAULT)) } } pub fn waitpid(pid: usize, status_ptr: usize, flags: usize) -> Result { loop { { let mut exited = false; { let contexts = context::contexts(); let context_lock = contexts.get(pid).ok_or(Error::new(ESRCH))?; let context = context_lock.read(); if let context::Status::Exited(status) = context.status { if status_ptr != 0 { let status_slice = validate_slice_mut(status_ptr as *mut usize, 1)?; status_slice[0] = status; } exited = true; } } if exited { let mut contexts = context::contexts_mut(); return contexts.remove(pid).ok_or(Error::new(ESRCH)).and(Ok(pid)); } else if flags & WNOHANG == WNOHANG { return Ok(0); } } unsafe { context::switch(); } //TODO: Block } }